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Abstract. A master equation formulation of the kinetic, q-state Potts model is presented. 
It is shown that this formulation reduces to Glauber's dynamics in the Ising limit. The 
single-spin problem is considered and the properties of its q - 1, temperature dependent 
relaxation times are studied. The linear chain problem is much harder than in the Glauber 
case-a variational method is used to obtain a lower bound for the dynamical critical 
exponent ( z  3 3 for q > 2). A discussion of these and related problems is presented. 

1. Introduction 

The simplest generalisation of the Ising model is, perhaps, the Potts model (see, e.g., 
Wu 1982 for a review). Consider a lattice whose sites are labelled by i = 1,2, .  . . , N. 
At each site, associate an object (usually called a spin) which can exist in any of q 
different (orthogonal) states, labelled by CY = 1,2 , .  . . , q. Let Pi"' be the projection 
operator onto the a state of the spin located at site i. In its simplest formulation, the 
Potts Hamiltonian is 

I 

Here, the first term describes a pair interaction and the dot product is an abbreviated 
notation for E m  P~")P~")--hence, spins couple only if they are in the same state. The 
last term represents an applied field. 

It is easy to show that for q = 2 one recovers the Ising model; also, the limit q = 1, 
taken in a convenient way, is equivalent to the percolation model (other limits are 
discussed by Wu 1982). In zero field and for nearest-neighbour interaction, the q-state 
Potts model presents a great variety of transitions which depend both on q and d, the 
space dimensionality. 

In d = 1 (any q ) ,  the transition occurs at zero temperature; the model is trivially 
solved and the correlation length 5 is found: 

z q e-pJ epJ - 1 5-' = -log epJ 
+ q - 1  

where P is the inverse temperature and the last expression applies in the limit T = 0. 
In higher dimensionalities the transition occurs at finite temperature and a line 

qc( d )  is found above which the transition is first order. Certainly, q,(2) = 4 and qc( d )  = 2 
for d > 4. Also, the infinite range model is easily solved and it does show a first-order 
transition for q > 2. 

0305-4470/85/122289+ 11$02.25 @ 1985 The Institute of Physics 2289 
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The critical behaviour strongly depends on d and q. The q dependence arises from 
the underlying permutation group of the order parameter. 

The equilibrium properties of the Potts model are, therefore, reasonably well 
understood, although they still form the subject of very active research. The situation 
is, however, completely different with respect to the dynamical behaviour of the Potts 
model-leaving aside Monte Carlo simulations and the Ising model dynamical studies, 
it appears that there is just one analytical work related to the dynamical properties of 
the q-state Potts model (Forgacs et al 1980). (This work will be discussed below.) 
Obviously, the study of the dynamical properties should prove to be very interesting, 
namely the way critical dynamics depends on q and d,  the behaviour of transport 
properties near the different types of phase transitions the model exhibits, etc. Besides, 
comparison with Monte Carlo or  experimental results should prove a crucial test of 
the model or its approximations. 

It is the purpose of this paper to present a Glauber-like approach (Glauber 1963) 
to the dynamics of the Potts model. It must be stressed, at this point, that even in its 
simplest formulation there is no unique way to generalise Glauber's dynamics for 
q > 2 .  The choice we made was based on the criterion of simplicity and the requirement 
that Glauber's equation should be recovered for q = 2 .  As an illustration of our theory, 
we study the relaxation of a single spin under a constant field ( §  3):  for general field 
direction, there are q - 1 relaxation times and  even in the particular case of a field 
pointing in one of the Potts directions, we find different longitudinal and  transverse 
relaxation times. The one-dimensional model (§ 4), which is trivially solved for q = 2 ,  
is much more complicated for q > 2 ;  we were unable to find an  explicit solution and 
we just present a variational calculation which yields a lower bound for the critical 
dynamical exponent ( z  3 3 for q > 2 ) .  Finally, we discuss the results (0 5 )  and comment 
on further lines of research. 

2. Basic theory 

In this section, we shall introduce the necessary formalism and discuss the requirements 
for the establishment of a master equation for the Potts model. 

We have already introduced the projection operators Pea); from their definition, 
the following properties are easily established: 

G,,P(a) C P U J  = n ,  Tr PcoJ = 1. (3% b, c)  pC-ipCP)= 
" 

We shall below have to use a related, traceless operator 

Notice that 

These operators act on the kets la )  defining the space of the states. It will be 
sometimes preferable to define equivalent operators which act on functions F (  a )  = 
( a J F )  of the states-such operators will be denoted by the same letter with a hat, e.g., 
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We now introduce operators that change the states. They are obviously unique for 
q = 2 but the choice is no longer unique for q > 2 ;  as we said earlier, our choice is 
dictated by simplicity and  we define shift operators 4(r)(  r = 0, . . . , q - 1) by 

( 6 )  

In here, it is understood that the labels a and a + q denote the same state. We 

+“’ I  a )  = 1 a - r ) .  

also define the associated operators $ ( r ) :  

$ ( r ’ ~ ( a )  = ~ ( a  + r ) .  ( 7 )  

It then follows that 

p F (  a )  = c F (  a )  
U U 

independent of the shift operator. 
The set of operators 4“’ forms an  Abelian group: 

9‘0’ = 1 

[ + [ r ) 1 - 1  = , j ( r !  = 4 ‘ q - r ’ .  

Finally we introduce the scalar product of two state functions 

( R e )  =e vo(a)O(a). 
U 

We shall only consider real functions. 
Now, we require the master equation to be a first-order differential (with respect 

to time) equation, without any memory effects (stochastic process); to conserve prob- 
abilities and  to accept the Boltzmann equilibrium distribution as the only static solution; 
to generate a decay to equilibrium from any initial distribution; and ,  finally, to reduce 
to Glauber’s equation for q = 2. We present it as a ‘fait accompli‘: 

In here, the first summation is over the spins and acts only on the space of 
the spin located at site i. The set of real parameters W, ( r  = 0 , .  . . , q - 1) represents 
single-spin relaxation times and they are subjected to conditions indicated below; 
notice, however, that WO is irrelevant, since it is added and  subtracted in (1 1). Therefore, 
there are really q - 1 relaxation times, only. Finally, M, is an  operator, defined by 

M, = eP”/Tr, , ,  ep” = ePx/Z, (12) 

where H is the spin Hamiltonian and Z, is, in general, still an  operator obtained by 
tracing over the spin i. 

If we use the distribution function: 

??(a,, . . . , a,; t )  = ( a , ,  . . . , a,(9(  1 ) )  

we can write (1 1) in the alternative form 

I ,  ( r )  

a 
--??(a; t , = C  a t  w,Ip-c w, f i ,??(a; t ) .  

It is now easy to see that (8) implies both the conservation of probability and  a static 
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solution defined by the equilibrium distribution 

Peq(a;  t )  = Z-’ (a , .  . . a N J  e-paPla, .  . . a,)= Z-’  exp(-PE(a))  (14) 

where Z(P) is the partition function: 

Z(P) =c exp(-PE(a) )  = Tr exp(-PX). 
(I 

We may rewrite (13) in the form 

(J /J t )p (a ;  t )  = i g ( a ;  t )  (16) 

which defines the Liouville operator i. Now, let 

~ ( a ;  t )  = e x p ( p & / 2 ) ~ ( a ;  1 )  

aP’/Jt = LISt 

so that 

where 

it = e x p ( ~ 2 / 2 ) i  e x p ( - ~ & / 2 )  

To obtain (18) we used (12) together with the fact that the operator jz commutes with 
the shift operators $!r’. Now, we require to be Hermitian; from (9b), this demands 

w,= Wq-r ( r = O , q  , . . . )  q-1 ) .  (19a) 

We can now easily show that i’ is a non-positive operator. Consider (cp, i‘cp) where 
cp is any state function. Using (18) and defining 

cpI = ( ~ x P ( P ~ ~ / ~ ) / J Z ) V  

we obtain 

Using the definition (7) and Schwarz’s inequality, one obtains 

( c p l ,  $%4) ( c p l ,  cpl) .  

1 W,>O. 
This implies i’ to be non-positive, provided 

I 

We have not been able to prove that the equilibrium distribution is the only static 
solution. We shall accept that the relaxation times obey other necessary conditions to 
ensure such property. 

Finally, it is easy to show that (13) does reduce to Glauber’s for q = 2. For that 
purpose, it is better to label the spin states by u = *I (instead of a = 1,2)  and notice 
that 

(20) & ! I ) =  -7;j*)=i&, 
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where Si is the usual Pauli matrix. Also, 

which is enough to convert (13) into Glauber’s equation. Finally, we remark that 
Forgacs er a1 (1980) work presents a different choice for the dynamical rates-however, 
for 4 = 2, one does not recover Glauber’s equation and, for general q, it is not obvious 
that their Liouvillian is, or can be reduced to, a non-positive operator. Therefore, any 
comparison between their work and the present one should be exercised with care. 

3. Relaxation of a single spin subjected to a constant field 

In this section, we consider a simple application of the previous theory which has 
pedagogical interest and also yields some useful conclusions. To simplify the algebra, 
we assume W, = W > 0. The main results are derived in appendix 1. 

In general field direction, we find q - 1 temperature dependent relaxation times 
(given by (A1.5)); this result should be contrasted with the Ising limit ( 4  = 2) for which 
there is just one, temperature independent, relaxation time. 

For the particular choice of a field pointing along a specified direction in Potts 
space, we obtain one relaxation time associated with the relaxation of the longitudinal 
component of the distribution function and another relaxation time, with a degeneracy 
4 -2 (and, hence, with zero weight for 4 = 2), associated with the relaxation of the 
transverse components of the distribution function. 

4. Critical dynamics in the linear chain 

The Glauber model is trivially solved in one dimension. This is due to the simple form 
that (21) takes in that case-it generates a linear equation for the evolution of the 
magnetisation. 

The situation is, unfortunately, much more complicated for 4 > 2. Indeed, the form 
which Mi now assumes introduces nonlinear terms, even in one dimension. This can 
easily be seen from the following identity 

where 

with 

(24) 0 = 1 - e-PJ. 

Notice that the last term in (23), when inserted in (22), cancels exactly for 4 = 2-this 
is the enormous simplification which, however, only occurs for the king model. 

Since we can no longer solve exactly the model, we turn to a variational method 
(Haake and Tho1 1980) which yields a lower bound for the dynamical exponent 
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(Halperin and  Hohenberg 1969). The calculation is outlined in appendix 2 ;  here, we 
comment on the main results. 

2 for q = 2 ;  this last result is consistent with 
the exact one ( z  = 2 for q = 2). It is tempting to conjecture z = q for the linear chain, 
but we believe the more correct guess to be z = 3 for q # 2 ,  the result for q = 2 appearing 
accidentally. Indeed, the method we used in appendix 2 shows clearly that the different 
result we obtain for q = 2 is due to a cancellation, which only occurs for q = 2 ,  in the 
denominator of (A2.9) which is, essentially, the same as in (23) and which, therefore, 
has its origin in (22). 

The numerator of this equation just decouples spin i from the other spins, thus 
breaking the chain into two independent chains with two less interactions. These 
introduce a factor t-2,  and an  additional factor t-' arises from the denominator of 
the variational quotient. Therefore, at least for the trial function we used, the case 
q = 2 is distinguished from the others because of the peculiar behaviour the form of 
the operator M ,  takes for q = 2-and we recall that this form is imposed b> detailed 
balance. 

Now, one may use other trial functions (still orthogonal to P,,(a)-othrr choices 
have failed to reveal a different lower bound. Also, we have been unable to provide 
an  upper bound for the dynamical exponent. 

Finally, we remark that these results seem to contradict the statement of Forgacs 
et a1 (1980) that z = 2 for q # 2. Unfortunately, these authors d o  not give details of 
their calculation-it is possible that the discrepancy arises from the different, non- 
equivalent formulation of the master equation or the choices for the dynamical rates. 

First, we obtain z > 3 for q > 2 and z 

5. Discussion 

We have presented a master equation formulation of the kinetic Potts model which 
reduces to Glauber's dynamics in the Ising limit. Although there is n o  unique way to 
generalise the Ising results, we have taken the simplest approach-yet, the results 
obtained show how special the Ising limit really is. 

The isolated spin subjected to an  external field shows, in general, q - 1 relaxation 
times with explicit temperature dependence. 

The linear chain is no longer trivially soluble. A variational calculation showed 
that the critical dynamical exponent z is not smaller than 3 for q > 2, in contrast with 
z = 2 for the Ising limit. We give some arguments to suggest that z = 3 for general 
q > 2 ,  although we could not prove it. It appears that the case q = 2 is accidentally an  
exception because of an  exact cancellation of the dynamical matrix. If it is an  accident, 
we should conclude that there is just a universality class for one-dimensional Potts 
dynamics, as there is for statics. 

Of course, the situation should, very likely, be completely different in higher 
dimensions. The equilibrium properties already depend critically on the number of 
Potts states-we should expect the dynamics to show similar dependence. It is therefore 
interesting to investigate within the present approach these higher-dimensional models 
and, in particular, the effect of changing the order of the transition. Another interesting 
possibility arises in connection with recent generalisations of Glauber dynamics (Haake 
and  Tho1 1980), which already show different dynamical universality classes for the 
Ising case. 
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Finally, we must mention that consideration of gauge couplings, random fields or  
impurities show how rich the kinetic formulation of the clock model can be once it is 
put to work. 
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Appendix 1. Solution of the single-spin problem 

We first notice that we can always impose, upon the components H ,  of the field, the 
condition 

c Ha = O .  
0 

(Al . l )  

This does not restrict the problem: it is obvious from (1) and  (3b) that the substitution 
H ,  by Ha + c, just adds a constant to the Hamiltonian. Thus, we can always choose 
c so as to guarantee (Al.1).  

The operator M (equation (12)), can always be written as 

where 

Tr exp(-Pf?- P ) P ,  
Tr exp( - p f i .  P )  ’ Bo = 

Therefore 

C B a = l .  
OL 

For the single-spin problem, these quantities are positive numbers: 

B, = e xp - PHa ) / C ~ X P  ( - P H ,  1. 
Y 

Inserting (A1.2) into the master equation and  using (8) we obtain 

(A1.2) 

(Al.3) 

(A1.4) 

where T = wt and 

%p = Bp - qB,&3. 

Obviously, the eigenvalues of this matrix are the relaxation rates 0, (with the opposite 
sign). It is easy to find that these are the solutions of 

(Al.5) 

In view of (Al.3),  one root is always zero, corresponding to the equilibrium distribution. 
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A graphical method then shows all other roots to be positive, since, from (A1.3), 
B, > 0. Thus, there are, in general, q - 1 independent, temperature dependent, relaxa- 
tion times. 

We consider the particular case of a field H oriented along a particular direction 
in Potts space-say, HI = H > 0 and H ,  = - H / ( q  - l ) ,  a > 1. We easily solve (A1.5) 
and, besides the trivial solution, obtain 

= { e x p ( P W + ( q  - 1) exp[-PH/(q - 1)1)/I(s - 1) exp(PH) 

+exp[-PH/(q - 1)1} (A1.6) 

fh= 9 exp(PW/{(q-  1) exp(PH)+exp[-PH/(q-1)1}. (A1.7) 

The first expression gives the relaxation rate for the longitudinal component. The 
other root, which is q - 2 degenerated, is associated with the relaxation of the transverse 
components ( a  > 1) of the distribution function. Indeed, if we denote 

P'( a, t )  = P( a,  t )  - Peq( a )  
we obtain: 

Y'(1, r ) =  P'(1,O) exp(-R, 7 )  

For general q, both R I  and 0, are temperature dependent. However, for q = 2 
R I  = 1 and although R, has a limiting form it disappears completely from the distribu- 
tion function: the term in brackets in the above equation vanishes identically for q = 2. 

Appendix 2. Variational method for the linear chain (zero field) 

From equation (176), we notice that the long-time behaviour of the relaxation function 
is determined by the smallest (in absolute value) non-zero root ( - A )  of the eigenvalue 
equation for the Liouville operator it. Since this is non-positive, any trial function 
(orthogonal, however, to the eigenfunction with zero eigenvalue, that is, the equilibrium 
distribution) will certainly yield a lower bound, that is, 

(A2.1) -A 3 (9 ,  &) / (9 ,  $1. 
We shall take $ ( a )  of the form: 

+ ( a )  = exp(-pfi/2)$'(a) 

and specify $ ' ( a )  later. Now, using (18) and the definition of scalar product, we get 

(9, if$) = (G', f exp(-Pfi)+CI') 

(A2.2) 

(A2.3) 



E J S Lage 2297 

Now, we choose 

(A2.4) 

where the CQ's are q-real, variational parameters. They will form the components of 
a vector c in Potts space. Since 

P e q ( a )  = e - P E ( a ) / Z ( ~ )  

we obtain 

where the last line follows from the properties (equations (3)) of the projection 
operators. Since, in one dimension (Pi" ' )= l / q  for any finite temperature, it follows 
that orthogonality is guaranteed if we require 

c, = 0. 

Using this property, we can now obtain 

" 
(A2.5) 

(A2.6) 

where we have used well known results for one-dimensional correlations. In a similar 
way, we can write (A2.2) as: 

1 

N i j  n 
= -1 exp(-PE ( a  ))Mi(a) ca, [ w r c m L + r  - ( W) cu,] 

where the second line follows from (8). If, for the moment, we write 

ck" = c,,, 
we obtain 
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We may calculate the required thermal average, using (22) and  recalling the 
equilibrium value of the correlation of several spin operators. Instead, we shall use 
another route which, although only adequate for the linear chain, is easier and sheds 
more light onto the final result. Substituting from (22), we obtain 

where 

(A2.9) 
- q -2u+  u2(1 - l / q )  

( q  - 2u)( q - 2u + U') 
U 2  

q - 2u + U'( 1 - l / q )  
- 

In equation (A2.8) we labelled the partition function with the number N of spins on 
the line. Now, equation (A2.8) clearly shows that the spin i becomes totally decoupled 
from the other spins. Hence, the trace over i can immediately be performed (using 
equation (5)) :  

where p (  k, k+ 1)  = exp(PJ&. Fk+l).  The linear chain has been split into two disjoint 
chains. Using (A2.9) we obtain 

Since 

ZN = q[eP' + - 1IN-' 

we finally obtain 

4 q -2u+  u2(1 - l / q )  
[ exp(PJ )+q  - 112 (q -2u) (q  -2u+  U')' 

X 

Using this result and (A2.6) into (A2.1), we obtain 

( A2.10) 

(A2.11) 

where 

1 1 

(A2.12) 

Using (24) and  (2), we may cast the limit T=O in the form 
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We thus obtain: 

z 3 3  for q > 2 .  

F ( 4 ,  n a  5-* 
For 4 = 2, however, the factor q -20 vanishes (like 6-l)  and we get 

consistent with the exact result. 
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